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A Model for Genetic Relationship among Offspring
from Open-pollinated Plant Populations

Hans-Rolf Gregorius

Lehrstuhl fiir Forstgenetik und Forstpflanzenziichtung der Universitdt Gottingen (BRD)

Summary. Based on monoecious, diploid plant species, a model is constructed to determine genetic rela-
tionship within the seed production of an open-pollinated population, characterized by its rates of self-fer-
tilization, population density and mode of pollen dispersal. Genetic relationship is measured by the coef-
ficient of inbreeding of a seed produced by a mother plant located at a specified place, or by the coeffi-
cient of kinship between two seeds, produced from the same mother plant or produced from two different
mother plants separated by a certain distance. The influence of the single parameters on these coefficients
is demonstrated by some typical examples, which show that dimensionality of the habitat (one- or two-di-
mensional) ,as well as, range and type of pollen dispersal, has little influence on the relationship between
seed produced from the same mother plant and, on the other hand, emphasize the important role of the
rate of self-fertilization and population density. Some remarks on how to apply Wright's concept of neigh-
bourhood to continuous plant populations close this paper.

Introduction

Many plant breeding activities require detailed knowl-
edge about the genetic relationship among offspring
(seed) from open-pollinated plant populations (see e. g.
Squillace, 1975). Considering monoecious plant species,
these offspring may berelatedin different ways: they may
originate from the same mother plant and thus be half-sibs;
full-sibs resulting from cross-fertilization or full-sibs
resulting from self-fertilization; or they may originate
from different mother plants and thus cannot be selfed
full-sibs but may be related in any of the other ways in-
cluding further possible relationships. The aim of this
paper is to determine average coefficients of kinship
among seed harvested from the same mother plant as
well as from two different plants separated by specified
distances. Special interest is paidto the influence of the
rate of self-fertilization, population density and range
of pollen dispersal on these parameters; the statement
of the problem requires no assumptions concerning seed
dispersal.

The consideration of pollen dispersal introduces mi-
gration of genetic material in a continuous way and rela-
tes the present problem to the field of continuous migra-
tion; models for this have been constructed from diffe-
rent points of view, mainly by Wright (1943, 1946) and
Malécot (1948, 1950, 1967). Because of the difficulties
which arise from these and also from more recent mo-
dels for continuous migration, ase. g. givenby Maruya-
ma (1972) and Fleming and Su (1974), when trying to
apply them to actual plant populations, Gregorius (1975)

worked out a restatement of Malécot 's model for this pur-

pose . The fact that the concrete results derived from this
model mainly describe aspects which become important
after a long series of generations and thus primarily have
evolutionary implications makes it necessary to develop
a representation of the model which is appropriate for an
application to the above case.

The Model

The following considerations are based on monoecious, di-
ploid plant populations which are distributed over their
habitats according to a specified population density. The
seed production of each plant, in this context denoted as
mother plant, is broken down into two parts, one resul-
ting from self-fertilization and the other resulting from
cross-fertilization. The cross-fertilized part of the seed
production of a mother plant is accomplished under the
assumption that each cross-pollinating pollen has an
equal chance to come to fertilization. All members of
the population flower at the same time and produce pol-
len to the same extent. Any form of gametic selection
and mutation is excluded or at least regarded as negli-
gible. With these assumptions, coefficients of inbreeding
and kinship among the seed production of mother plants
located at different places are computed; the coefficients
refer to the one locus case.

The following notations will be used:
w(x)
q(x) := rate of self-fertilization of a plant located at

population density at place x

place X, i.e. the probability that a seed pro-
duced by a mother plant at place x results from

self-fertilization
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p(x|y) := probability density that apollen which came to
fertilization at place y originates from place x

£(x) ;= coefficient of inbreeding of an individual from
the parental generation located at place x

&(x,y) := coefficient of kinship between two individuals
from the parental generation, one located at
place x and the other at place y

] O(x) := average coefficient of kinship of two seeds ran~
domly drawn from the seed production of a plant
located at place x

& 1 (x,y) : = average coefficient of kinship of two seeds ran-
domly drawn from the seed production of two
different plants, one located at place x and
the other at place y

fl(X) := average coefficient of inbreeding of a seed

randomly drawn from the seed production of

a plant located at place x.

Computation of <I>O(x) :

By @ ,o‘s, dc we denote the three different types of game-
tes that can be contained in a seed produced from aplant
located at a certain place; ? is the female gamete, ds is
the male gamete which comes from the sameplant (self-
fertilization) andcfC is the male gamete coming from a
different plant (cross-fertilization). Thus two types of
seed, viz. & Q d Q@ exist, which can be combined into
three dlfferentpalrs i.e. (d Q,38 Q) (o‘ Q,d Q) and
(d Q,d Q) havmg probablhtles q(x) s 2q(x)(1 q(x))
and (1- q(x)) to be drawn from the seed production of a
plant, located at place x. The coefficients of kinship for
these three pairs may each be obtained by determining
the identity relations between the four different combi-
nations of two gametes, one drawn from the first and

the other from the second seed:

(62, 3.0): 3 (1+2(x))
(69,52 : + (142(x)) + 2 -[o(x,p(yInay
(8.2, 5.0): & (141(x)) + § [ (x,y)p(ybIay +

+ % -f¢(y,2)p(yIX)p(ZIx)dde * :1- 'I(%(hf(y))-

_a(y,y)) R0

wly) dy-

The last integral contributes to the fact that the two

cross-fertilizing gametes o‘C can originate from the same
plant (the derivation method is analogous to that givenby

Malécot (e.g. 1967) and Gregorius (1975)). Summing

up all the terms we are led to
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8,(x) =3 (1+2(x)) 3 (1+a(x)? + 3 (1-a(x)?) x

xJo G yiptyboay + (1-ae)?[[ (L (ettyn -
- a(y, y)) -L(uy(l}’;())—zdy+u[<1>(y, z)p(ylx)p(zlx)dydz ].( 1)

Computation of <I>1(x, y):

Again, choosing the above way of proceeding and conside-
ring that we now are concerned with pairs of seeds pro-
duced from two different plants located at place x and y,
thefourtypes(d‘? 30 ) (dQ 3.2 ) (o‘@ L )
and (o‘ Q ,3 Q ) ofpalrs of seed can be dlStll’lnglShed and
havethe respectlveprobablhtles a(x)qly),qlx) (1 - q(y)),
(1-q(x)qly) and (1-q(x))(1-q(y)) to be drawn (note
that e. g. d‘SQX now describes a seed resulting from self-
fertilization at place x). The coefficients of kinship for

these four pairs are:

(ds X’ dsz) 2 ®(x,y)
(62,9 L2.) : %@(x,y) +% -fé(z,x)p(zfy)dz +
+3 - | 30100 -2 (x| G
(624> 52y) %@(x,y) +% 'I@(z,y)p(zlx)dz .
c 3o |30t -ety,y | 24
(6.2,:3,9.) 1e(x,y) fé(z ¥)p(zlx)dz +
N [%(uf(y)) “e(y,y) | RYSL -
+% f (z,x)p(zly)dz +
30 |3 (1et00) - 20,0 | Rl
5] o vIp(up(viy) dua +
1 J(3a2)- 0 (2,2) Rlzllplan) o

Thus altogether

8, (x,3) = 2 1aq(x)) (1raly)) - 1 (x,y) A 1eq(0) (1-q(3) x
x[(%{hf(x))—@(x,x)) (xl f<I>(z X)P(Z|Y)dz] +
LG (eato)) | (21t -0y, v) RYIEL
+[4(z,)p(abo) az | + L1-aG)(1-a(y)) | [ (£ (11(2)-
-<I>(z,z)) (zlx)p(zly)

w(z
+f<1>(u,v)p(u|x)p(v|y) dudv ] .

dz +

(2)
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For pure self-fertilization at places x and y, i.e.
ql{x) =q(y) =1, equations {1) and {2}, of course, spe-
cialize to the well known results <I>0(x) :%(1+f(x)) and
<I>1(x,y) =‘I>(x,y.) .

Computation of f1(x) :

Clearly the male gamete contained in a seed can be of
type ds or dc thus generating the following probabilities
of identity between the alleles carried by the male and

female gamete:
2 : %(1+f(x)); S :j@(y,x)p(y |x)dy. Therefore

£,(x) = (1—q(X))-fé(y,x)p(ylx)dy+ a(x) - %(1 +1(x)).

(3)

Obviously there is no direct dependence of f1 on the
population density .

In plant breeding experiments there is usually no
exact knowledge about the true values of the ®(x,y) and
f(x), but rather, an idea about the magnitude of the aver-
age coefficient of kinship resp. inbreeding. This fact
can be taken into account assuming the coefficients to
be independént of the locations of individuals, i.e.
¢(x,y) = ®and £(x) = {.Thus Egs.(1), (2) and (3) change
into
%00 =0+ [ 3100 -0 4[(1ra(x)?+ (1-q(x)) 2K (),

2
with K(x) ::f %dy; (1a)

¢y =0 e[ (1en-e |- 4 [ B GLq)(1-aty)) s

+ BRI (1 q(0) (1+a()) + (22)
¢ (1-q(0) (1-a(y) - K (x,y)]

with K(x,y) ::f (Zli)z(ﬂ ) dz;

f(x) =8+ [-;:(hf) _cp] - qlx). (3a)

The meaning of the quantities K(x) and K(x,y), which
comprise the compound influence of pollen dispersal and
population density, can be stated as follows: under the
condition of cross-fertilization K(x) the probability that
two pollen cells which come to fertilize a plant located at
place x originate from the same plant, and K(x,y) isthe
probability that two pollen cells which come to fertiliza-
tion at two different plants located at place x resp. ¥y
originate from the same plant. Furthermore, -Pt((x;?—)
approximately is the probability that a pollen cell which
came to fertilize a plant located at place y originates
from just one different plant located at place x; there-
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fore %(()%))Q =0. In caise the coefficients of kinsh‘ip ofan
individual with itself, 5 {1+f), and between two different
individuals, &, are equal, then ¢0(x) =¢= 3 (x,y)

=1, (x).

Assuming that all individuals produce seed tothe same
extent, the average coefficient of kinship resp. inbreed-
ing within the seed population, & ' resp. f' say, can be
defined with respect to the population density, if, for the
moment, we assume the population size to be finite, i.e.
ju(x)dx =:N <o , and put

= e(x) : & :f¢1 (x,y)e(x) e(y) dxdy +

e (x) 2

dx ,
p{x

[ @y -2, xx0) -

which is derived with the help of the same reasoning we

used in the computation of fbo and <I>1;
£ = [, e (Dax .

Some straightforward substitutions and rearrange-

ments lead to a representation of ¢'and f'in theform
8=0+ (L(1+1)-0)- M withM':l-f L
2 ’ T4 B (x)
2
U(l-q(y))p(xw)a(y)dy+(1+q(x))s(x)] dx,

£'=¢+ (%(1+f)-<1>)-a, with g ::Iq(x)s(x)_dx,

which are exactly the same representations I obtained
earlier applying a different approach to the same situa-
tion (Gregorius {1975)). As N = <O we arrive at the re-
spective result for hypothetically infinite population size.

Small Size of Habitat

A special situation occurs if the range of pollen disper-
sal is large compared with the size of population's '
habitat. In this case cross-pollination, and as a conse-
quence cross-fertilization, may be regarded as taking
p(x)dx =: N
is the population size. Recalling the meanings of K(x),

K(x,y) and ﬁxL)

place approximately at random. As before,

, Which have been explained above, the
values they adopt for random cross-fertilization can be

deduced easily:

_ 1 =y _ 1 _ _N-2
K(X) N e —mandK(x,y) = W .

With these results, Egs.(1a) and (2a), after some

simple rearrangements, attain the form

b, =0+ [FGen-e]- 1 [ (eaxn? .
1

+(1"I(X))2'N_-1'] (1b)
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_ 1
@1(X,y) =9 +N——

i %(“f)‘q’]x

x |1- 3 (14 G (1+a) - (1- () (1-a(9)) g |-

(2b)
Obviously, random cross-fertilization cancels out the
influence of population density. The decrease of genetic
relationship with increasing population size N is much
stronger for seed originating from different plants than
it is for seed produced by the same plant; to be concrete,

if <I>o(x) is considered as a function of N it never can re-

main under ¢ + %(11L q(x))z(-zl—(h- f) - <I>). Note that N=2,
q(x) = 0 = & = f reflects the case of cross-fertilized full-

sibs from non-related and non-inbred parents and ¢ . as

0
well as ¢ 1 should be equal to %, which is confirmed by

(1b) and (2b).

Large Size of Habitat

The size of the habitat is considered to belarge if the re-
verse of the statement in the last section applies, i.e. if
the range of pollen dispersal is small oompared with the
size of the habitat. Provided the population density is
the same everywhere, i.e. p(x) =1, we may assume
the probability densities p(xly) to be independent of
locations y in most parts of the population and additio~
nally to be radially symmetric; that is, p{xly) is a
function of the distance || X-y || between locations x and
y only, which can be written as p(xly) =p (|| x-v|).
With these notations

K(x) = %-fp(“y“)zdy =: K and K(x,y) =

-2 b Ulz-xDp(ll z-ll) az.
Thus (1a) and (2a) change into

200 = ox [T(ren a1 [ (1eaG®s (1-qG 2k
(1c)
8 (x,y) =04 [L(1ep)-8|- L. [z BXx=¥D (4 o) q(y))
1 2 4 =

+ (1-q(x)) (1-q(y)) - K(x,y>] . 2¢)

To get a concrete idea of the effect which a limited range
of pollen dispersal has on the various coefficients of kinship,
we shall investigate some examples which employ simple
types of probability densities p of the kind usedin (1c) and
(2¢) . In many situations rough approximations for the actual
p may be obtainedby assumingthe pollendispersal to be
uniform within a certaindistance limit R, which, for ex-

ample, inthe case of atwo-dimensional habitat, means
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that all plants withina circle of radius R, except for the one
whichis assumedtobe located in the centre of the circle,
have an equal chanceto contribute as fathers to the seed
production of the central mother plant; on the other hand,
pollen originating from outside that circle should not
reach the central mother plant, i.e. have probability 0
of coming to fertilization at this plant. From this, p has
the following representation

N for [x]| <R

2 (lxlD =

0 forllxll>R

where N is the number of plants contained in a circle of
radius R (two-dimensional habitat) resp. a straight line
(one-dimensional habitat) of length 2R.

a) We will start with a one -~ dimensional habitat, i.e.

individuals are distributed along a straight line accord-
ing to a population density given by w. In this case

N = 2Rp andK=ﬁ1_-i .

K(x,y) has to be computed for three different cases
separately. First, lx— yl > 2R: the intervals centred
around x and y respectively don 't overlap and thus
K(x,¥) = 0; secondly R <[x -y |< 2R: the two intervals do
overlap andthe overlapping part does not contain the twoin-
dividuals located at places x and y, so that the number
of individuals which can contribute pollen at places x
and y at the same time is equal tow - (2R - [x-y|);
thirdly, |x - y|< R: the overlapping part of the two in-
tervals contains the individuals atplace x and y and thus
the number of individuals which can contributepollen at
places x and y at the same time is equal to

we (2R - |x - y|) - 2. Altogether we therefore have

0 forlx—y] > 2R

b (2R-|x-y|)

K(x,y) = for R < [x-y| < 2R

(N-1)2
- (2R - - -2
= (N_I}I()zyl) orlx-yl <.

This means that <I>1(x,y) can be regarded as a func-
tion of the difference |x -y| andthus is composed of three
straight lines with a discontinuity at the point [x-y|= R,
which is demonstrated by Fig.1.

b) For the case of a two-dimensional habitat, as de-
scribed above, considerations are analogous. We now have
N=p- Rzﬂ and K = -Nl-—l as before. The number of indi-

viduals located within the intersection of two cirles which
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Fig.1. Coefficient of kinship &, (x) of two seed pro-
duced from plants separated by a distance x. Theplants
are distributed along a one-dimensional habitat with
population density w. Pollen dispersal takes place ac-
cording to a uniform probability density with range R.

q = rate of self-fertilization, & resp. f = coefficient of
kinship resp. inbreeding in the parental generation.The
respective coefficient of kinship ¢, of two seed produc-~
ed by the same plant equals in case R = 20: &, = 0.2857
and in case R = 50: §, = 0.2829
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0.005
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80 m 100

Fig.2. Notations as given in the legend of Fig. 1. The
plants are distributed over a two-dimensional habitat
and pollen dispersal takes place according to a radially
symmetric uniform probability density with range R. In
case R = 20: ¢ = 0.1533 and in case R = 50: $,=0.1516

have radius R and are centred around places x and y
respectively (|| x-y|l < 2R) is equal to

x-y

2
3 jx-yll ‘/Rz_n%ﬂL]=:I(x,y)

as is well known from elementary geometry. With this,

e 2R2- arccos

0 for || x-yl|l>2R
1(x,y) .

K(x,y) = ﬁ for R<||x-y||< 2R
Ux,y)-2

(No1)2 for lx-yill<R .
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Fig.3. Notations and preassumptions as given in the le-
gend of Fig.2, but now in case R = 20: &, = 0.2819 and
in case R = 50: &, = 0.2813
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Fig.4. Notations as giveninthe legendof Fig. 1. Theplants
are distributed along a one-dimensional habitat and pol-
lendispersal takes place accordingto an exponential prob-
ability density with 'range’' D as defined in the text. In
case D = 20: ¢, =0.2871 and in case D = 50:3,< 0.2836

Again CI>1(x,y) can be regarded as a function of || x-yl|
with a point of discontinuity at {|x-y]|| = R. The following
figures additionally give an idea of the change of <I>1
with R and q:

c) The change in shape of <I>1 when a continuous func-
tion for p is chosen may be demonstrated by applying an
exponential probability density to the case of a one-di-
mensional habitat:

p(ix}) =% . exp (~ax]) 0<a.
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With the help of this function the integrals which deter-
mine K and K(x,y) can be carried out easily and lead
to

o

2

K andK(x,y):%I([x—y‘+%)-exp(—oz- x-y|).

A graphical representation of this case for ¢ 1(x, y),
which again just depends on |x - y|, is given in Fig.4.
To give the quantity o a more clear meaning, it will be
related to the 'range' of pollen dispersal which now is
defined as the distance D within which approximately
95% of the pollen comes to fertilization, i.e., has to be

such determined such that

D
g. fexp(-alxi)mzo.gs.
‘D

It can be shown easily that D= s . Thus in the pre-

ceding formula 3/D has to be substituted for o.
The figures of all three examples demonstrate a con-

siderable difference between the maximum value of ¢ 1(x)
and <I>O. The influence of the range of pollen dispersal R
resp. Don Ql(x) is seen to be important, while there

is hardly any variation of <I>O with changing range as well
as shape of pollen dispersal (seelegendof Figs.1 and 4).
Another drastic change of <I>1(x) is due to the dimensio-
nality of the habitat as shown inFigs.1 and 3, where all
parameters are kept constant, but the population den-
sity u for the one-dimensional case has been chosen as
just the root of the density for the two-dimensional case,
to make both comparable. On the other hand, there is

no strong dependence of <I>O on dimensionality. A remark-
able change in <I>O obviously is caused by a change in the
rate of self-fertilization, as canbe seenfrom the legends
of Figs. 2 and 3.

The Meaning of Neighbourhood

The term 'meighbourhood'' is due to Wright (1946), who
suggested 'that the individuals are neighbours in the sen-
se that their gametes may come together '. This coming to-
gether of gametes generally takes place with different prob-
abilities and, at an extreme, all these probabilities may
be greater than zero - even in anhypothetically infinite po-
pulation - which should imply that all gametes may come to-
gether. To overcome this difficulty a finite theoretical
population is constructed in which all matings in question
are equally probable and for which an appropriate para-
meter adopts the same value as in the actual population.

This parameter is widely agreed to be the probability that
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two successful gametes are derived from the same indi-

vidual. In general these two gametes can be taken tocor-
respond to each other in various concerns, as e.g. for-
ming a zygote or being present in two specific individu-
als. The use of this parameter certainly is appropriate
because it reflects the possibility of a single individual
contributing to the whole process and thus makes a state-
ment about the 'finiteness' of the number of individuals
involved.

In its most elementary form a neighbourhood is defi-
ned with respect to a specified individual and describes
a set of further individuals (i.e. excluding the specified
individual) which are regarded as neighbours of the spe-
cified individual. Such a neighbourhood will be called ef-
fective if all its members are equally probable as mates
for the specified individual, i.e. ifthey constituteanideal
(theoretical) population in the above sense. Thus, start-
ing from an actual situation, it is possible to determine
the size of an effective neighbourhood with the help of the
probability that mating of the specified individual takes
place two times with any other individual. For plant po-
pulations, this is equivalent to computing the probability
that two crossfertilizing pollen at a given plant originate
from the same plant. In our preceding statements this
probability has been denoted by K(x) for a plant located
at place x. If the effective size of the neighbourhood of a

plant located at place x is equal to Ne(x) (not counting

1 -
the plant at place x) then K(x) "T\T:(ﬂ resp. Ne(x)V =
-m%, which can be shown easily.

A reasonable extention of the concept of effective
neighbourhood to two different specified individuals may
be deduced by considering the effective common neigh-~
bourhood of these two individuals which formally is de-~
fined as the intersection of the two effective neighbour-
hoods. The size of the effective common neighbourhood
of two plants located at places x and y respectively will
be denoted by Ne(x,y) and allows us to determine the
probability that two cross-fertilizing pollen at place x
and y originate from the same plant just in terms of ef-

N (x,y)
fective sizes, namely, W . Reflecting the

actual situation, this expression has to be equated to

N (x,y)
K(x,y),i.e. K(x,y) = N NG and thus enables
e e

us to relate Ne(x,y) to the actual situation:

Ne(x,y) = W%LKL%?; .
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Fig.5. The size N, (0,x) of the effective common neigh-
bourhood of two plants separated by distance x. The plants
are distributed along a one-dimensional habitat with po-
pulation density u. Pollen dispersal takes place accor-
ding to an exponential probability density with 'range' D
as defined in the text.

The usefulness of the concept of effective neighbour-
hood can be judged by looking at Eqgs.(1a) and (2a). It
is seen that, besides the 'initial conditions' for & and
f and the rate of self-fertilization, @O(x) is governedby
the effective size of neighbourhood solely. él(x,y) in ad-
dition needs knowledge about the effective size of common
neighbourhood and a quantity p(x|y)/w(x) which descri-
bes the extent of exchange of genetic material between the
twoplants located at places x and y respectively. Thus
Malécot's claim (1969, p. 76) that Wright 's concept of
effective number 'does not have the weight that he attri-
butes to it, because it does not account for the correla-
tion with distance', is shown not to hold true in gene-
ral.

If we compare the results for K and K(x,y), as given
in examples a) and b), with the representations we ob-
tain now, it can be stated that these examples directly
reflect the above findings. The probability density for pol-

Received November 20, 1974
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len dispersal applied in example ¢) now shall serve for
demonstrating the connection between continuous disper-
sal and effective sizes. Again, as has been done in ex-
ample ¢}, 3/D is substituted for a and thus leads to

4. Dy and

Ne(X) - Ne -3

Ng(xy) = s (Jx-y[+3D)-exp (- FIx-y]).

There is complete formal concordance with Wright 's
results (1946, Eq. (3)) for Ne(x) , provided we neglect con-
stants and accept the standard deviation (of anormal dis-
tribution) as a measure of the range of gamete dispersal.
To prevent possible misunderstanding it should be stated
that in general the effective neighbourhood cannot be des-
cribed in terms of areas having simple geometrical struc-
tures. This becomes especiallyclearif wetry to conceive
the effective common neighbourhood as the intersection
of areas, which is possible, e.g.in examplea), but which
proves to be impossible if we aim at a representation of
example c) using the geometric constellation of example
a), as can be taken from the above expression for Ne(x, y).
Finally, Fig.5 gives an impression of the conduct of
Ne(x,y) which, taking into account the above equation,
can be regarded as a function of the distance |x~y| only

for different D 's.
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